Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122088, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379157

RESUMO

A high-performance fluorescent probe 2,5-dimercapto-1,3,4-thiadiazole copper nanoparticles (DMTD-CuNPs) was synthesized by hydrothermal method based on monovalent copper (Cu(I)) and 2,5-dimercapto-1,3,4-thiadiazole (DMTD), and it can effectively detect cysteine (Cys) in plasma. Experiments show that DMTD can reduces band gap of Cu(I) in DMTD-CuNPs, promote charge transfer transition from DMTD to Cu(I) and significantly enhance fluorescence intensity of DMTD-CuNPs at 515 nm. The large Stokes shift of DMTD-CuNPs is 315 nm, which can reduce the self-quenching of probe fluorescence and improves detection accuracy of the probe. In the presence of Cys, fluorescence of DMTD-CuNPs at 515 nm is significantly quenched because Cys reacts with Cu(I) in DMTD-CuNPs through Cu-S bond to form reduced charge transfer, which can be successfully used for the detection of Cys. Linear range and detection limit for Cys detection are 25-65 µM and 50 nM, respectively. Furthermore, feasibility of detecting Cys in plasma using DMTD-CuNPs probe was evaluated by standard addition method, and the absolute recovery is 96-99%. Such a DMTD-CuNPs probe shows high sensitivity, good selectivity and low detection limit for Cys, which is expected to be used for the practical analysis of Cys in plasma.


Assuntos
Cisteína , Corantes Fluorescentes , Corantes Fluorescentes/química , Cisteína/análise , Cobre/análise , Espectrometria de Fluorescência/métodos , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...